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J ,  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  SER. 2, V O L .  2 .  P R I N T E D  I N  GREAT B R I T A I N  

Spectral decompositions of certain functionals for the 
evaluation of quantum-mechanical sums 

Abstract. This letter presents spectral decompositions (in the Dirac formalism) of 
certain functionals which are useful in finding approximate estimates, through the 
calculation of rigorous lower and upper bounds to the true value, of some quantum- 
mechanical sums. 

This letter achieves a substantial generalization of some earlier results of the present 
author (Shaima 1967, 1969, to be referred to as I and 11, respectively). The generalized 
results can be used in the evaluation of some so-called quantum-mechanical sums. The  
elegance of the method used in this letter derives from its astounding simplicity and the 
derivations are so straightforward that it is adequate to state merely the crucial results in 
their final form. In  any case the details of the derivations are exactly similar to those 
described in I and 11. 

Formalities. We shall denote complex conjugation by an asterisk and Hermitian 
conjugation by an obelisk. Letters denoting operators will each carry a circumflex. Suppose 
that in a Hilbert space d a Hermitian operator I?, has a complete set, in the Dirac (1958) 
sense, of orthonormal eigenkets { belonging to a set of non-degenerate eigenvalues 

; the labelling index is so chosen that the eigenvalues form a monotonically increasing 
sequence and the lowest eigenvalue and the corresponding eigenket are labelled by 
i = 0. I t  is further supposed that the lowest part of the eigenvalue spectrum of I?, is 
discrete and the remainder is continuous. Suppose further that I?l is an operator which 
may or may not be Hermitian; we denote the number (in general complex) (@i(o)jI?l 1 Q t ( O ) )  

by e i ( l ) ,  We wish to find the spectral decompositions of functionals whose extrema corres- 
pond to the value of the sum St,r,s given by 

where s denotes a summation over the discrete spectrum and an integration over the 
continuous spectrum, and the prime over it denotes that the summation over n = i is 
omitted, r and s are integers (positive, negative or zero) and o! and /3 are real numbers. For 
the sake of brevity we introduce the following notations: 

and S I  and s" are defined by equations analogous to (7) and (8), respectively. We denote an 
arbitrary ket by IY) and denote its spectral decomposition by 

The functionals and their spectral decompositions. The functionals are obtained by 
modifying those of I and I1 to fit the requirements of the present problem. We derive them 
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in such a way that it is unnecessary to restrict I’F) to the orthogonal complement of the 
one-dimensional linear manifold spanned by 1 aito)}. For the generalized Hylleraas 
functional we have 

Ei,r ,s( lY})  = ( ‘ F p P ] Y )  - c I I “ ( 2 + p ) ‘ S ’ [  (@p)lY}y 
+ <yjjr‘&’(B1 -p)]@p} + (@p~(QI* - p * ) j r ‘ & ’ l y }  

Similarly, Iy( lY))} of I1 is now modified to read 

ly( /Y >) ) = p”&”IY } - d”(2 +P”f‘ ( @ , l c O ) i Y )  jal‘o’} + (A, - p ) p p ) .  
It is convenient to define a functional FL,r , s  as follows: 

%,d iy >) = ( Y I ~ ~ ‘ @ I Y  > 
= S ’ m ( r , ~ 2 ” ’ ) ~ ( ” + ~ s ’ ’ )  

ni ni 

Lower and upper bounds. Suppose N is the smallest integer such that N # i, and for 
any integer t 2 JV 

W t z p  > 0; (13) 

(when such an integer does not exist the method is still formally valid if relation (13) is 
true for some continuum index v, but in such cases the method is not IikeIy to have any 
practical application) we then have the following bounds for Si,r.s: 

n # i  

n i i  

I t  is to be noted that the subtraction of the summation in the upper bound of relation (14) 
is necessary for establishing a rigorous upper bound and the calculation of the same terms, 
as in 11, allows us to improre the lower bound. I t  is possible to improve the bounds further 
by progressively extending the summation to values of n higher than N. We also note that 
a further generalization of these results to the case where the multiplying factor of IHniI2 
in the sum is a ratio of any two polynomials in with real coefficients is a mere triviality. 

The spectral decompositions also help us to find better lower bounds than those of 
relation (14) in particular cases: for example, if r > 0, s = - r ,  it is easy to verify that 

n # i  
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Comparison of the error terms in the lower bounds of the inequalities (14) and (15) for this 
particular case indicates that the latter lower bound is likely to be better than the former 
for small values of p. 

These results not only include all the results derived earlier in I and I1 and also those 
derived by a number of other authors (see, for example, Robinson 1969a, b where further 
references will be found) as particular cases but go very much farther. 

Department of Mathematics, 
Birkbeck College, 
University of London. 

C. S. SHARMA 
3rd February 1969 
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A simple method for calculation of conditions behind 
shock waves 

Abstract. Conditions behind the incident and reflected shock wave in a shock tube 
are calculated from the initial conditions of pressure, density and temperature, 
together with the known speed of the incident shock wave. In this method the 
enthalpy of the gas is regarded as consisting of two parts: (i) the enthalpy evaluated 
for a gas consisting of molecules having no internal excitation and (ii) a correction 
term to be added to (i) to take account of internal excitation. An iterative solution to 
the flow equations for incident and reflected shock waves based on this correction 
term is obtained. Results for carbon monoxide are given in graphical form. 

In shock-tube research the need arises for calculating conditions in shock-heated gases 
from known initial conditions and the measured shock speed. Although tables are 
available for some gases, interpolation using a table is not always accurate enough. The 
method presented here is very well suited for computer use. 

In a frame of reference in which the incident shock wave is at rest the equations of state, 
continuity, momentum and energy are, respectively, 

hs + &z2 = h, +&I2 = ho 
where h is given by 

h = (1 +gn)RT+$(T). 

p ,  p and T have their usual meanings, R is the gas constant per gramme, zi is the flow speed 
and h is the specific enthalpy. Suffixes 1 and 2 refer to conditions upstream and down- 
stream of the shock wave, respectively. Conditions 1 are assumed known. Clearly, U, is 
the speed of the shock wave in laboratory coordinates. n is the number of degrees of free- 
dom for rigid molecules (E = 3 ,  5 or 6 according as to whether the gas particles are 
monatomic, linear molecules or non-linear molecules). 

Equation ( 5 )  shows the enthalpy as consisting of two parts: (i) (1 + &n)RT, which is the 
enthalpy appropriate to rigid molecules, and (ii) the term $(T) ,  which represents the 


